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Abstract

An efficient numerical algorithm based on a Fourier spectral iterative perturbation method is proposed to accurately compute the
electrostatic fields in three-dimensional (3D) microstructures with arbitrary dielectric inhomogeneity and anisotropy. The method can
be conveniently implemented in phase field modeling of microstructure evolution in systems with inhomogeneous dielectric constants
as well as inhomogeneous polarization and charge distributions. It is employed to determine the temperature–shape (aspect ratio) phase
diagram, domain structures, and domain switching of PbTiO3 nanoparticles using phase field simulations. It is shown that the Curie
temperature is enhanced for nanowires and nanorods and reduced for nanodots. The critical sizes below which the ferroelectricity dis-
appears for the nanowire and thin film are estimated to be around 1.4 nm. Vortex domain structures are found in nanorods, nanodots,
and nanodisks. Results are in general agreement with existing experimental observations and first principle calculations.
Crown Copyright � 2013 Published by Elsevier Ltd. on behalf of Acta Materialia Inc. All rights reserved.
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1. Introduction

Nanoscale ferroelectrics have received considerable
attention due to their potential applications in microelec-
tronics [1], such as non-volatile ferroelectric random access
memory (NFERAM) [2]. For example, ferroelectric nano-
wires (FNWs) are being considered as a new medium for
next generation ultrahigh density computer memory
[3–5]. Many ferroelectric nanostructures of controlled size
and shape have been synthesized [6–12]. Mao et al. synthe-
sized single crystalline BaTiO3 nanowires using a simple
1359-6454/$36.00 Crown Copyright � 2013 Published by Elsevier Ltd. on beh
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one step solid-state chemical reaction [10]. Urban et al.
showed that crystalline nanorods composed of BaTiO3

and SrTiO3 with a cubic perovskite structure could be syn-
thesized by solution-based decomposition of bimetallic alk-
oxide precursors [7].

The size and shape of a ferroelectric device strongly affect
the Curie temperature and polarization morphologies, and
extensive experimental and theoretical studies have been
carried out to investigate the phase transitions in nanoscale
ferroelectric particles. For example, Spanier et al. used scan-
ning probe microscopy to measure the ferroelectric phase
transition temperatures in individual BaTiO3 nanowires
and obtained diameter-dependent Curie temperatures [12].
Naumov et al. investigated free-standing nanoparticles of
perovskite Pb(Zr0.5,Ti0.5)O3 (PZT) with disk and rod shapes
alf of Acta Materialia Inc. All rights reserved.
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using ab initio calculations. They found that vortex domain
structures are stable in these nanoparticles [5]. Moreover,
assuming polarization is along the axial direction (x3 direc-
tion of the coordinate plane) of the nanoparticles, Mor-
ozovska et al. used the direct variational method to solve
the Euler–Lagrange equations derived from the Landau–
Ginzburg–Devonshire (LGD) free energy expression to
obtained an approximate analytical expression for the
dependence of Curie temperature on the size, polarization
gradient coefficient, extrapolation length, effective surface
tension, and electrostriction coefficient [13]. Ignoring sur-
face tension and assuming a homogeneous polarization dis-
tribution in epitaxial BaTiO3 nanowires Wang et al. studied
the strain effects on the phase transition of BaTiO3 nano-
wires using Landau theory [14].

Modeling the phase transitions and domain structures
of ferroelectric nanoparticles requires solutions to the Pois-
son equation in an electrically inhomogeneous and aniso-
tropic system with spatially dependent dielectric
constants, electric polarization, and charge density distri-
butions. Solving the electrostatic equilibrium equation in
an inhomogeneous system is also a common problem in
modeling many other materials, including batteries, solid
oxide fuel cells, dielectric capacitors, and dielectric/ferro-
electric heterostructures, such as ferroelectric superlattices,
ferroelectric islands, ferroelectric polycrystals, and epitaxi-
ally grown ferroelectric thin films or nanowires, and ferro-
electrics with voids/cracks.

In order to solve the elastic equilibrium equation with
arbitrary elastic inhomogeneity and anisotropy a number
of numerical algorithms have been proposed. These include
the conjugate gradient method (CGM) [15,16], phase field
microelasticity method (PFMM) [17,18], Fourier spectral
iterative perturbation method (SPM) [19], as well as a com-
bination of the uniform eigenstrain method (UEA) and the
Fourier iterative spectral perturbation method (SPM) [20].
The similarity of the electrostatic equilibrium equation to
the mechanical equilibrium equation motivated us to
develop an SPM to solve the electrostatic equilibrium equa-
tion for systems with arbitrary electric inhomogeneity and
anisotropy.

As an example, we studied the shape and size effects on
the phase transitions and domain structures of ferroelectric
nanoparticles. In Section 2 we outline the Fourier iterative
SPM for calculating the electric potential and electric field
for systems with arbitrary electric inhomogeneity and
anisotropy. In Section 3 we describe a phase field model
for simulating the ferroelectric nanoparticles. The results
and discussion are given in Section 4. The paper concludes
with a short summary.

2. Solution of the electric equilibrium equation

Here we give a general description of an electrically
inhomogeneous system and then solve the electrical
equilibrium equations by the SPM scheme. The dielectric
constant is spatially dependent and anisotropic. The
position-dependent total polarization PT(r, E) for dielec-
trics/ferroelectrics as a function of the electric field E can
be written as

PTðr;EÞ ¼ PSðrÞ þ PEðr;EÞ; ð2:1Þ
where PS(r) is the spontaneous polarization and PE(r, E) is
the polarization induced by the electric field E(r). In gen-
eral the induced polarization and local electric field are re-
lated by the equation

PEðr;EÞ ¼ e0vðr;EÞ � E; ð2:2Þ
where e0 is the vacuum dielectric constant and v(r, E) is the
field-dependent dielectric permittivity of the reference crys-
tal far from any lattice instability [21–23]. In this work v(r)
is assumed to be E-independent. Thus, the induced PE(r,E)
is written as

PEðr;EÞ ¼ e0vðrÞEðrÞ: ð2:3Þ
The total electric field E(r) originates from the external
electric field Eext and the depolarization field Ed(r), caused
by the spontaneous polarization PS(r), i.e.

EðrÞ ¼ Eext þ EdðrÞ: ð2:4Þ
Therefore the electric displacement D(r, E) can be written
either in terms of total polarization PT(r, E) or spontane-
ous polarization PS(r) by substituting Eqs. (2.2) and (2.3)
into the electric displacement expression, i.e.

Dðr;EÞ ¼ e0EðrÞ þ PTðr;EÞ
¼ e0EðrÞ þ PSðrÞ þ e0vðrÞEðrÞ
¼ e0jðrÞEðrÞ þ PSðrÞ; ð2:5Þ

where j(r) = d + v(r) is the relative dielectric constant, and
d is the Dirac delta function.

The physical variables in Eq. (2.5) describe vectors or
tensors. Accordingly, we can rewrite the electric displace-
ment in terms of components of vectors and tensors using
Einstein notation:

Diðr;EÞ ¼ e0jijðrÞEjðrÞ þ P S
i ðrÞ: ð2:6Þ

The electric displacement is written in terms of spontane-
ous polarization since it is this quantity which is commonly
used in the Landau theory of ferroelectrics [14,23,24]. It is
convenient to introduce the dielectric inhomogeneity
through a position-dependent relative dielectric constant
jij(r). The electrostatic equilibrium equation in the Max-
well equations indicates that the gradient of the electric dis-
placement equals the position-dependent free charge
density, i.e.

@Diðr;EÞ
@xi

¼ @½e0jijðrÞEjðrÞ þ P S
i ðrÞ�

@xi
¼ qfðrÞ: ð2:7Þ

To solve Eq. (2.7) we introduce another physical variable
u(r), called the “depolarization potential”, related to the

depolarization field by Ed
j ðrÞ ¼ �

@uðrÞ
@xj

. Using this substitu-

tion and Eq. (2.4), Eq. (2.7) becomes
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@ e0jij rð Þ Eext
j �

@uðrÞ
@xj

� �
þ P S

i ðrÞ
h i

@xi
¼ qfðrÞ: ð2:8Þ

We write the position-dependent relative dielectric constant
as the sum of the homogeneous reference j0

ij and inhomo-
geneous perturbation Djij(r), i.e.

jijðrÞ ¼ j0
ij þ DjijðrÞ; ð2:9Þ

Substituting Eq. (2.9) into Eq. (2.8) and rearranging we
obtain

j0
ij

@2uðrÞ
@xi@xj

¼ @

@xi
DjijðrÞ Eext

j �
@uðrÞ
@xj

� �� �

þ 1

e0

@P S
i ðrÞ
@xi

� qfðrÞ
e0

: ð2:10Þ

Eq. (2.10) is the key electrostatic equilibrium equation for
an electrically inhomogeneous system. Assuming periodic
boundary conditions Eq. (2.10) can be numerically solved
using the fast Fourier transform and spectral iterative
method for zero order, first order, or higher order approx-
imations as outlined below.

2.1. Zero order approximation

Assuming the dielectric constants to be homogeneous so
that Djij(r) is 0 in Eq. (2.10) we have

j0
ij

@2u0ðrÞ
@xi@xj

¼ 1

e0

@P S
i ðrÞ
@xi

� qfðrÞ
e0

: ð2:11Þ

In Fourier space

�j0
ijqiqj ~u

0ðqÞ ¼ I
e0

qi
eP S

i ðqÞ �
~qfðqÞ
e0

; ð2:12Þ

where ~u0ðqÞ, eP S
i ðqÞ, and ~qfðqÞ are the Fourier transforms of

u0(r), P S
i ðrÞ, and qf(r), respectively, and qj is the jth compo-

nent of the reciprocal lattice vector. Solving Eq. (2.12) we
get

~u0ðqÞ ¼ � I
e0

GðqÞqi
eP S

i ðqÞ þ GðqÞ ~qfðqÞ
e0

; ð2:13Þ

where GðqÞ�1 ¼ j0
ijqiqj. Taking the inverse Fourier trans-

form of both sides of Eq. (2.13) we obtain the zero order
approximation of the depolarization potential,

u0ðrÞ ¼ � 1

e0

Z
d3q

ð2pÞ3
GðqÞðIqi

eP S
i ðqÞ � ~qfðqÞÞeIq�r: ð2:14Þ

The zero order depolarization field is then given by

Ed�0
j ðrÞ ¼ �

Z
d3q

ð2pÞ3
Iqj ~u0ðqÞeIq�r: ð2:15Þ
2.2. First order approximation

Substituting the zero order depolarization potential (Eq.
(2.14)) and depolarization field (Eq. (2.15)) into Eq. (2.10)
we obtain the first order solution for the depolarization
potential

j0
ij

@2u1ðrÞ
@xi@xj

¼ @

@xi
DjijðrÞ Eext

j þ Ed�0
j ðrÞ

� �h i

þ 1

e0

@P S
i ðrÞ
@xi

� qfðrÞ
e0

: ð2:16Þ

The solution of u1(r) is obtained in Fourier space:

~u1ðqÞ ¼ �IGðqÞqifDjijðrÞðEext
j þ Ed�0

j ðrÞÞgq

� I
e0

GðqÞqi
eP S

i ðqÞ þ GðqÞ ~qfðqÞ
e0

; ð2:17Þ

where fDjijðrÞðEext
j þ Ed�0

j ðrÞÞgq
indicates the Fourier

transforms of DjijðrÞðEext
j þ Ed�0

j ðrÞÞ. The first order depo-
larization field in real space can be obtained from the po-
tential by

Ed�1
j ðrÞ ¼ �

Z
d3q

ð2pÞ3
Iqj ~u

1ðqÞeIq�r: ð2:18Þ
2.3. Higher order approximation

Higher order solutions for u(r) are derived in a similar
way as the first order approximation,

j0
ij

@2unðrÞ
@xi@xj

¼ @

@xi
½DjijðrÞðEext

j þ Ed�ðn�1Þ
j ðrÞÞ� þ 1

e0

� @P S
i ðrÞ
@xi

� qfðrÞ
e0

: ð2:19Þ

As with the solution for u1(r), the solution for un(r) is
solved using Fourier transforms:

~unðqÞ ¼ �IGðqÞqifDjijðrÞðEext
j þ Ed�ðn�1Þ

j ðrÞÞg
q

� I
e0

GðqÞqi
eP S

i ðqÞ þ GðqÞ ~qfðqÞ
e0

: ð2:20Þ

Higher order approximations of the depolarization field
can be obtained from

Ed�n
j ðrÞ ¼ �

Z
d3q

ð2pÞ3
Iqj ~u

nðqÞeIq�r: ð2:21Þ

The total electric potential U(r) can be calculated from the
electric fields via Eext

j þ Ed
j ðrÞ ¼ �

@UðrÞ
@xj

. Using the inverse
Fourier transforms we have

UðrÞ ¼
Z

d3q

ð2pÞ3
Iq�1

j fEext
j þ Ed

j ðrÞgq
eIq�r: ð2:22Þ

It should be emphasized again that the above formulation
for solving the electrostatic Poisson equation is applicable
only under the assumption of the harmonic approximation
and of an electric field-independent dielectric constant. For
instance, this formalism can be used to solve the electro-
static equilibrium equation in linear dielectrics or dielectric
composites. In the phase field model of ferroelectrics the
soft mode contribution to the dielectric constant has
already been included in the Landau free energy as a



Fig. 1. Three-dimensional schematic illustration of the nanoparticles in
the simulation with a, a, and h indicating the length, width, and thickness,
respectively.
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function of polarization [25]. This soft mode contribution to
the dielectric constant depends on the electric field. How-
ever, there is still a contribution from hard modes, which
is non-zero far from the transition temperature and was
called the background dielectric constant by Tagantsev
[25]. This background dielectric constant is usually indepen-
dent of the electric field. Only this background dielectric
constant is explicitly included in the Poisson equation in
the phase field model of ferroelectrics [24], and thus the pro-
posed SPM described above can be used to solve the Pois-
son equation in the following phase field model of
nanoferroelectrics.

3. Phase field model of ferroelectric nanoparticles

Periodic boundary conditions cannot be directly used for
nanoparticles. Therefore, we employed an extended compu-
tational cell with the nanoparticles surrounded by a vacuum
[5,26], as shown in Fig. 1. In the phase field model the tem-
poral domain structure evolution is described by the time-
dependent Landau–Ginzburg (TDGL) equation:

@Pðr; tÞ
@t

¼ �L
dF

dPðr; tÞ ; ð3:1Þ

where P(r, t) is the spontaneous polarization field, L is a ki-
netic coefficient that is related to the domain wall mobility,
and F is the total free energy of the system. The total free
energy includes the bulk energy, elastic energy, electric en-
ergy, and gradient energy:

F ¼
ZZZ

V

ðfbulk þ felastic þ felectric þ fgradÞdV : ð3:2Þ

The bulk free energy density for PbTiO3 is described by a
sixth order Landau–Devonshire polynomial:

fbulk ¼ a1ðP 2
1 þ P 2

2 þ P 2
3Þ þ a11ðP 4

1 þ P 4
2 þ P 4

3Þ
þ a12ðP 2

1P 2
2 þ P 2

1P 2
3 þ P 2

2P 2
3Þ þ a112½P 4

1ðP 2
2 þ P 2

3Þ
þ P 4

2ðP 2
1 þ P 2

3Þ þ P 4
3ðP 2

1 þ P 2
2Þ� þ a111ðP 6

1 þ P 6
2 þ P 6

3Þ
þ a123P 2

1P 2
2P 2

3; ð3:3Þ

where all of the coefficients were fitted to bulk properties at
zero stress and, except for a1, are independent of temperature.

The elastic energy density is given by:

felastic ¼
1

2
cijklðrÞeijðrÞeklðrÞ

¼ 1

2
cijklðrÞðeijðrÞ � e0

ijðrÞÞðeklðrÞ � e0
klðrÞÞ; ð3:4Þ

where cijkl(r) is the component of the position-dependent
elastic stiffness tensor, eij(r) is the elastic strain, eij(r) is
the total strain, and e0

ijðrÞ is the eigenstrain or transforma-
tion strain. Using the cubic phase as the reference the spon-
taneous strain e0

ijðrÞ can be expressed by the electrostrictive
coefficients and polarizations as e0

ijðrÞ ¼ QijklðrÞP kðrÞP lðrÞ.
Here the Einstein summation convention for the repeated
indices is employed and i,j,k,l = 1,2,3. According to Kha-
chaturyan’s elastic theory the total strain eij(r) may be
expressed as the sum of homogeneous and heterogeneous
strains, i.e. eijðrÞ ¼ eij þ deijðrÞ [27]. The homogeneous
strain is defined in such a way that

R
deij(r)dV = 0, which

represents the macroscopic shape change of a system gen-
erated due to the formation of a domain structure. The het-
erogeneous strain does not change the macroscopic shape
of a system, and it can be calculated from deij(r) = (oui(r)/
oxj + ouj(r)/oxi)/2, where ui(r) are the components of the
position-dependent displacement. We solved the mechani-
cal equilibrium equation rij,j = 0 for an elastic inhomoge-
neity system using the SPM to obtain the equilibrium
elastic field [19], as shown in Appendix A.

Homogeneous strain in the system was determined by the
mechanical boundary conditions. For constant strain
boundary conditions the homogeneous strain eij was taken
to equal the externally applied straineapp

ij . For constant stress
boundary conditions the homogeneous strain was deter-
mined from [28]:
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eij ¼ hsijklðrÞiðrapp
kl þ hcklmnðrÞe0

mnðrÞi � hcklmnðrÞdemnðrÞiÞ;
ð3:5Þ

where hi represents the volume average of the component.
Due to the high surface to volume ratio for nanoparti-

cles contributions from surface stress can be significant in
determining the phase transitions and domain structures.
The surface stress is dependent on the particle shape. For
instance, the surface stress for a spherical particle is
rij = - p(i = j) and rij = 0(i – j), whereas for cylindrical
particles such as nanorods and nanowires it is
r11 = r22 = �p1, r33 = �p3, rij = 0(i – j). Here p is the
compressive stress of a spherical particle, p1 is the biaxial
compressive stress along the 11 and 22 direction of cylindri-
cal particles, and p3 is the compressive stress along the 33
direction of the cylindrical particles. The surface tension
plays a role similar to hydrostatic pressure for a sphere,
and to biaxially compressive stress for a cylinder. It was
concluded in previous experimental and theoretical works
that the surface stress is proportional to the curvature of
the surface, such that p ¼ l

r [13,29,30], where l is deter-
mined by the two media on either side of the interface
and typically has a value between 1 and 50 N m�1

[13,31]. In this work we use a cuboidal shape model for
simplicity and relate the surface stress to the size by [31]:

r11 ¼ r22 ¼ �
l1

a
; r33 ¼ �

l2

h
; r12 ¼ r13 ¼ r23 ¼ 0; ð3:6Þ

where l1 is the surface stress coefficient of the lateral sur-
face, l2 is the surface stress coefficients of the bottom/top
surfaces, a is the length and width of the nanoparticles,
and h is the height of the nanoparticles. This surface ten-
sion is equivalent to an externally applied compressive
stress on the nanoparticles of

rapp
11 ¼ rapp

22 ¼ �
l1

a
; rapp

33 ¼ �
l2

h
; rapp

12 ¼ rapp
13 ¼ rapp

23 ¼ 0:

ð3:7Þ
The induced homogeneous strain can be calculated by
substituting Eq. (3.7) into Eq. (3.5). With the solution to
the mechanical equilibrium equation the elastic energy den-
sity can be calculated using the expression

felastic ¼
1

2
cijklðrÞðeij þ deijðrÞ � QijmnðrÞP mðrÞP nðrÞÞ

� ðekl þ deklðrÞ � QklmnðrÞP mðrÞP nðrÞÞ: ð3:8Þ
The electrostatic energy density of a given domain struc-
ture is calculated using [23,25,32–34]

felectric ¼ �PðrÞ � E� 1

2
e0j

bðrÞE2

¼ �P iðrÞEiðrÞ �
1

2
e0j

b
ijðrÞEiðrÞEjðrÞ; ð3:9Þ

where jb
ijðrÞ is the position-dependent background dielec-

tric constant tensor. Assuming no space charge inside the
nanoparticles, the electric displacement

DiðrÞ ¼ e0j
b
ijðrÞEjðrÞ þ P iðrÞ ð3:10Þ

satisfies the electrostatic equilibrium equation

@DiðrÞ=@xi ¼ 0; ð3:11Þ
which can be solved by the proposed SPM. In previous
phase field models on ferroelectrics, the dielectric inhomo-
geneity was described using an inhomogeneous distribution
of the Landau–Devonshire polynomial coefficients
[24,35,36] and a homogeneous background dielectric con-
stant was assumed in the electrostatic equilibrium equa-
tion. The effect of an inhomogeneous background
dielectric constant will be discussed in Section 4.1 by com-
paring the electric field solutions.

The gradient energy density in an anisotropic system can
be expressed as:

fgrad ¼
1

2
cijklP i;jP k;l; ð3:12Þ

where cijkl is the gradient energy coefficient and Pi,j = oPi/
oxj. For an isotropic system Eq. (3.12) can be rewritten as

fgrad ¼
1

2
c11ðP 2

1;1 þ P 2
2;2 þ P 2

3;3 þ P 2
1;2 þ P 2

2;1 þ P 2
1;3

þ P 2
3;1 þ P 2

2;3 þ P 2
3;2Þ; ð3:13Þ

where cij is related to cijkl by the Vogit’s notion and
c12 = 0, c11 = 2c44 in an isotropic system.

With the total free energy density Eq. (3.1) can be solved
in Fourier space with a given polarization boundary condi-
tion. The generalized boundary condition for polarization
due to the surface or size effect can be written as a linear
combination of the polarization and its gradient at the sur-
face, i.e. (C1dP/dn + C2P)|on the surface = 0, where C1 and C2

are constants determined by the degree of charge compen-
sation on the surface. If there is full compensation of
charges on the surface the polarization is homogeneous
across the surface, leading to C2 = 0, C1 – 0, and if there
is no compensation of charges on the surface polarization
should be) at the surface, leading to C1 = 0, C2 – 0. In
most cases the interface is partially compensated, leading
to the polarization boundary conditions [13,37,38]

dP

dn
þ P

d

� �
on the surface

¼ 0; ð3:14Þ

where n is the interface normal unit vector and d is the so-
called extrapolation length describing the polarization dif-
ference between the interface and bulk. Using the second
order finite difference approximation to find the derivative
(dP/dn), Eq. (3.14) may be discretized as [39,40]:

Pðx1;y;zÞ¼
4Pðx1þDx;y;zÞ�Pðx1þ2Dx;y;zÞ

3þkx
;

Pðx2;y;zÞ¼
4Pðx2�Dx;y;zÞ�Pðx2�2Dx;y;zÞ

3þkx
;

Pðx;y1;zÞ¼
4Pðx;y1þDy;zÞ�Pðx;y1þ2Dy;zÞ

3þky
;

Pðx;y2;zÞ¼
4Pðx;y2�Dy;zÞ�Pðx;y2�2Dy;zÞ

3þky
;

Pðx;y;z1Þ¼
4Pðx;y;z1þDzÞ�Pðx;y;z1þ2DzÞ

3þkz
;

Pðx;y;z2Þ¼
4Pðx;y;z2�DzÞ�Pðx;y;z2�2DzÞ

3þkz
; ð3:15Þ
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where kx ¼ 2Dx=dx, ky ¼ 2Dy=dy , kz ¼ 2Dz=dz, x = x1 and
x = x2 represent the two interfaces perpendicular to the
[100] direction, y = y1 and y = y2 represent the two inter-
faces perpendicular to the [010] direction, and z = z1 and
z = z2 represent the two interfaces perpendicular to the
[001] direction of a nanoparticle.

4. Results and discussion

In order to test the accuracy of the proposed SPM we
first employed two electrostatically inhomogeneous sys-
tems as examples: (1) an infinite ferroelectric plate with
spontaneous polarization PS surrounded by a vacuum;
(2) a ferroelectric sphere with spontaneous polarization
PS surrounded by a vacuum. In these examples the soft
and hard mode contributions to the dielectric constant
were not divided since we did not evolve the polarization.
We solved Eq. (2.10) directly to obtain the electric field
with the full dielectric constant as input. We then com-
pared the numerical results with analytical results for these
cases.

Finally, we employed the method to calculate the effects
of size and shape on the phase transitions and domain
structures of PbTiO3 ferroelectric nanoparticles. In this
case a position-dependent background dielectric constant
was used because the polarization was evolved in the phase
field model of ferroelectric nanoparticles.

4.1. Infinite dielectric plate in a vacuum

We considered a ferroelectric plate with parallel surfaces
perpendicular to the x-direction extending infinitely in the
y- and z-directions, as shown in Fig. 2a. This plate was
free-standing in a vacuum without an external electric field
(i.e. Eext = 0). We assumed this ferroelectric plate had a
spontaneous polarization of PS = 100 lC m�2 along the
x-direction. Due to the infinite extension along y- and z-
directions this problem can be regarded as quasi one-
dimensional. We used a large enough number of grid
points Nx in the simulation to alleviate any image effect
from the periodic boundary conditions. We used an isotro-
pic relative dielectric constant tensor with a value of 100 for
the ferroelectric plate. The SPM results were compared
with the analytical solutions (ANA) to validate the accu-
racy of the scheme.

The solutions for the electric potential, field, and dis-
placement along the A–A cross-section of the plate are
shown in Fig. 2b–d. It can be seen that the electric displace-
ment is 0 everywhere because there is no free charge. The
electric displacement across the interface with the air and
ferroelectric plates should be continuous. As shown in
Fig. 2c, the electric field should be 0 in the vacuum accord-
ing to D = e0jE + PS, as D and PS are 0 in the vacuum.
The numerical simulation using the present iterative pertur-
bation scheme shows that the electric field in the plate has a
homogeneous value of �1.1294 � 105 V m�1, which agrees
with the analytical solution that Einside = PS/e0-
j = �1.1294 � 105 V m�1. In this example we did not con-
sider an external electric field, so the calculated electric field
is the depolarization field which has an opposite direction
to the spontaneous polarization.

4.2. An isolated ferroelectric sphere in a vacuum

In order to study an isolated ferroelectric sphere in a
vacuum, as shown in Fig. 3a, we assumed that the radius
of the ferroelectric sphere was much smaller than the sim-
ulation box size to minimize the effect of periodic images
on the solutions. In this work we assigned a radius (R0)
of the ferroelectric sphere of 16 grid points and a simula-
tion size of 128 � 128 � 128 grid points to give the ratio
R0/Nx = 0.125. We assumed the ferroelectric sphere to
have a spontaneous polarization PS = 100 lC m�2 along
the x-direction and an isotropic relative dielectric constant
tensor of 100.

To reduce the Gibbs effect related to the Fourier trans-
forms of functions across the sharp interface between the
ferroelectric and vacuum we introduced a diffuse interface
shaped function to describe the interfacial region between
the vacuum and the ferroelectric in the form:

gðrÞ ¼ 1

2
f1:0� tanh½bðdðrÞ � R0Þ�g; ð4:1Þ

where d(r) is the distance of any point (x, y) from the center
of the sphere, and b is a positive parameter controlling the
width of the surface.

The analytical solution for the electrostatic equilibrium
equation in this example can be obtained from the Poisson
equation with the boundary conditions:

uðrÞ ¼
P S

3e0
x; r 6 R0

R3
0
P S

3e0
� x

r3 ; r P R0

8<
: ð4:2Þ

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
. It can be seen from Fig. 3b and c

that, except for slight discrepancies at the simulation
boundary and ferroelectric boundary, the numerical solu-
tions of the electric potential and field agree well with the
analytical results through both the A–A and B–B cross-sec-
tions. In both cases inside the ferroelectric ball the electric
field is homogeneous and, in the absence of an external
electric field equals the depolarization field induced by
interruption of the spontaneous polarization at the surface
of the sphere. The electric field has a maximal values at the
surfaces along the A–A cross-section and decreases to 0 in
a vacuum far from the ferroelectric. Differences between
the numerical and the analytical solutions around the
boundary stem from the fact that the numerical solutions
were obtained with periodic boundary conditions with a
diffuse interface description for the surface, while the ana-
lytical solution was for an isolated sphere in an infinite ma-
trix with a sharp interface description.

Since each order of approximation for the electric solu-
tion was obtained analytically (see Eqs. (2.15) and (2.18))
the proposed algorithm was extremely efficient. Fig. 3d



Fig. 2. (a) Schematics of an infinite ferroelectric plate with self-polarization PS in a vacuum, where R0 indicates the half-width of the plate. (b) Electric
potential u along the A–A cross-section calculated by the SPM compared with the analytical solution. (c) Electric field component Ex along the A–A cross-
section calculated by the SPM compared with the analytical solution. (d) Electric displacement component Dx along the A–A cross-section calculated by
the SPM compared with the analytical solution.
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shows the electric potential solution along the A–A cross-
section at several iteration steps in the solution. It can be
seen that the solutions higher than zero order are very close
to each other. Thus a first order solution is a very good
approximation for this special case.

Next we extended the simulation of the ferroelectric
nanosphere to include inhomogeneity in the polarization
distribution using the method described above to examine
the effect of the polarization response on the solution. As
shown in Fig. 4, the electric field solutions along the A–A
cross-section in Fig. 3a are compared by considering and
not considering the dielectric inhomogeneity. One can see
from Fig. 4 that the electric field solution obtained by con-
sidering only polarization inhomogeneity does not agree
with the analytical result, whereas the result obtained by
considering both the polarization inhomogeneity and
dielectric constant inhomogeneity agrees with the analyti-
cal result to a large extent. In other words, for the present
nanoparticle model with a vacuum covering the surface of
the ferroelectric particles both the polarization inhomoge-
neity and dielectric constant inhomogeneity have to be
taken into account in order to obtain accurate electric
solutions.

4.3. Phase transitions and domain structures of PbTiO3

nanoparticles

We studied the effect of the aspect ratio (h/a) on the phase
transitions, domain structures, and domain switching for
PbTiO3 nanoparticles with constant volume. The material
constants for the Landau free energy and electrostrictive
coefficients of PbTiO3 are taken from the literature [41–
45], i.e. a1 = 3.8 � 105(T � 752) C�2 m2 N, a11 =�7.3 �
107 C�4 m6 N, a12 = 7.5 � 108 C�4 m6 N, a111 = 2.6 � 108 -
C�6 m10 N, a112 = 6.1 � 108 C�6 m10 N, a123 = �3.7 � 109

C�6 m10 N, Q11 = 0.089 C�2 m4, Q12 = �0.026 C�2 m4,
Q44 = 0.0675 C�2 m4. The elastic constants are c11 = 1.796
� 1011, c12 = 7.937 � 1010, c44 = 1.111 � 1011(Nm�2) [46].
We assigned a value of 10 to the relative background
dielectric constant of PbTiO3. The size of the nanoparticles



Fig. 3. (a). Schematics of the middle section (parallel to the x–y plane) of an isolated ferroelectric sphere with self-polarization PS along the x-direction
surrounded by a vacuum, where R0 indicates the radius of the sphere. (b) Electric potential u along A–A and B–B cross-sections calculated from SPM
compared with the analytic solution. (c) Electric field component Ex along the A–A and B–B cross–sections calculated by the SPM compared with the
analytic solution. (d) Improved precision of the electric potential u along the A–A cross-section was obtained through iteration of the SPM.

Fig. 4. Electric field solutions along the A–A cross-section in Fig. 3a
obtained by considering and not considering the dielectric constant
inhomogeneity, respectively, compared with the analytical result.
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was a = Dx � Nx = Dy � Ny, and h = Dz � Nz, where Dx,
Dy, and Dz are the computational grid size, and
(Nx + 4) � (Ny + 4) � (Nz + 4) is the number of discrete
grid points with the outer four layers of grids being the vac-
uum layer. The different shape of the nanoparticles can be
achieved by changing the cell lengths (Dx, Dy, and Dz) or grid
number (Nx, Ny, and Nz). The normalized isotropic gradient
energy coefficient was assumed to have a value of 0.6. The
extrapolation lengths (dx, dy, and dz), which describe the
polarization difference between the interface and bulk, can
be regarded as the respective thicknesses of the interfaces
from a particular sense. In this work we assigned dx = dy =
dz = 3 nm, which was fitted from experimental measurement
[38]. Surface stress coefficients of the lateral interface l1 and
the top and bottom interfaces l2 were assumed to both be
4 N m�1 [31].

It should be noted that the electric and mechanical
boundary conditions have significant effects on the equilib-
rium domain structures. As shown in Fig. 5, the difference
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in elastic constants between a ferroelectric particle and the
surrounding matrix (Fig. 5a) can strongly affect the stress
distribution (Fig. 5b–d) within the particle [19], leading to
an inhomogeneous polarization distribution due to the
electrostrictive effect. In order to solve the electrostatic
equilibrium equation (Eq. (2.9)) the boundary condition
of the depolarization potential u should be specified. In
this simulation open-circuit boundary conditions were
applied on each surface of the cuboidal particle, as shown
in Fig. 1. The interfaces were automatically specified by
treating the space outside the specimens as a vacuum to
construct a periodic model so the proposed SPM can be
used to solve the electrostatic equilibrium equation with a
periodic depolarization potential on each boundary. When
an external electric field Eapp

3 was applied along the
x3-direction to study domain switching the total electro-
Fig. 5. (a). Schematics of the middle section (parallel to the x–y plane) of the p
the ferroelectric, Cm indicates the elastic constant tensor of the matrix, k is the e
the external stresses applied to the composite to study to elastic inhomogeneity
strengths resulted in different elastic stress solutions rx along the cross-section
obtained from the elastic inhomogeneity strength k ¼ 1:0. (d) Inhomogeneous s
(For interpretation of the references to colour in this figure legend, the reader
static potential was the sum of the periodic depolarization
potential and the non-periodically applied potential,
�z � Eapp

3 . Similarly, the spectral iterative perturbation
method with periodic displacements on each surface of
the cuboid model was used to solve the mechanical equilib-
rium equation [19], as shown in Appendix A.

The complete temperature–shape phase diagram of
PbTiO3 nanoparticles with a constant volume of 323 nm3

was constructed by numerically evolving the domain struc-
tures to equilibrium or near equilibrium as a function of h/
a and temperature, as shown in Fig. 6. It can be seen from
Fig. 6 that the Curie temperature of PbTiO3 nanoparticle is
enhanced in the rod (4 6 h/a 6 16) and wire (h/a > 16)
shapes. This result agrees with the observations of Yadlov-
ker and Berger for Roshelle salt nanorods (h/a � 500 nm/
30 nm � 16.67) [47]. This enhancement of the Curie
resent nanoparticle model, where Cp indicates the elastic constant tensor of
lastic inhomogeneity strength defined by k ¼ Cm=Cp, and rapp

x and rapp
y are

strength effect on the stress distribution. (b) Different elastic inhomogeneity
described by the red dash line in (a). (c) Homogeneous stress distribution
tress distribution obtained from the elastic inhomogeneity strengthk ¼ 0:5.
is referred to the web version of this article.)



Fig. 6. Temperature–shape phase diagram of free-standing PbTiO3

nanoparticles with a constant volume of 323 nm3, where hcritical and
acritical indicate the critical values for the thickness h and lateral length a of
the nanoparticle model, respectively, and a1, a2, and c represent the
domain orientations.

Fig. 7. Domain structures of PbTiO3 nanoparticles with different shapes: (a
32 � 32 � 32 nm nanodot; (d) 16 � 16 � 128 nm nanodisk; (e) 128 � 128 �
darkblue indicate domain structures with polarization along the [100], ½�100�, [
the references to color in this figure legend, the reader is referred to the web v
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temperature was attributed to the large lateral pressure
imposed by the surface stress, similar to the enhancement
of the Curie temperature in equally biaxially compressed
thin films [48,49]. At constant volume, with h/a continu-
ously increasing from 64, the ferroelectric transition tem-
perature begins to decrease. The ferroelectricity
completely disappears when a decreases to a critical size
of 1.36 nm, compared with 1.32 nm from extrapolation of
the first principle results [50]. On the other hand, with the
shape changing to an ultrathin film (small h/a) the same
phenomenon takes place and h has a critical size of
1.4 nm, compared with 1.0 nm from extrapolation of the
experimental results on epitaxial PbTiO3 thin film [51].
For a nanodot with a size of 32 � 32 � 32 nm, the Curie
temperature is lower than its bulk counterpart. This reduc-
tion in Curie temperature has been observed in experiments
when the size of the nanosphere is smaller than 40 nm [52–
54]. This reduction in Curie temperature for the nanodot
originates from the surface tension, which creates the same
effect as hydrostatic pressure [55].
) 4 � 4 � 2084 nm nanowire; (b) with size16 � 16 � 128 nm nanorod; (c)
2 nm nanofilm. Yellow, orange, light green, dark green, light blue and
010], ½0�10�, [001] and ½00�1� directions, respectively. (For interpretation of
ersion of this article.)



Fig. 8. Domain switching of PbTiO3 nanoparticles with different shapes:
(a) 4 � 4 � 2084 nm nanowire; (b) 16 � 16 � 128 nm nanorod; (c)
32 � 32 � 32 nm nanodot; (d) 16 � 16 � 128 nm nanodisk; (e)
128 � 128 � 2 nm nanofilm.
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For nanoparticles from nanowires to ultrathin films the
domain structures are expected to be dependent on the par-
ticle size, shape, and electrical boundary conditions, as
shown in Fig. 7a–e. It can be seen from Fig. 7a that for a
nanowire with a size of 4 � 4 � 2048 nm only a single c+

(where the polarizations are along the axial direction of the
wire) domain is stable, while for a nanorod with a size of
16 � 16 � 128 nm the domain structure includes many c

domains and a few a1/a2 domains. In a nanowire with an
axial dimension much longer than the lateral length the effect
of lateral stress arising from the shape and size plays a more
important role than the electric boundary condition in deter-
mining the domain structures, thus the extremely slender
wire favors a single c+ or c� domain, as shown in Fig. 7a.

The diameter effect on the domain structure of a nano-
wire with a 2048 nm axial length was also investigated. It
was found that with increasing diameter the domain struc-
ture transitions from a single c+ or c� domain to several c+

and c� domains at 18 nm. For a nanorod with a size equal
to 16 � 16 � 28 nm the combined shape and electric
boundary condition effects determine the domain struc-
tures. In the nanorod there are many c domains (volume
fraction 0.84), which are favored by the lateral stress due
to the rod shape, with a few a1/a2 domains (volume frac-
tion 0.16) forming vortex domains favored by the open-cir-
cuit electric boundary conditions, as shown in Fig. 7b.
Such vortex domain structures in ferroelectric nanorods
under open-circuit electric boundary conditions have been
found by first principles [5], in agreement with our work
and other phase field simulation results [56,57]. In a nano-
dot with a size equal to 32 � 32 � 32 nm the surface ten-
sion plays the same role as hydrostatic pressure, rather
than biaxial or uniaxial stress. Thus a1/a2 and c domains
should coexist with similar volume fractions, and the sim-
ulation shows that the volume fractions of a1/a2 domains
and c domains are the same (both equal to 0.5), as shown
in Fig. 7c. Similarly to the nanorods, domains assemble
into vortex domain structures in the nanodot, which has
also been observed experimentally [58] and verified by first
principle calculations [59]. With further decreases in the
aspect ratio c domains disappear and a1/a2 twin domains
and some in-plane vortex domains become stable, as shown
in Fig. 7d and e.

Fig. 8 shows the shape effect on domain switching in the
PbTiO3 nanoparticle. It can be seen that the coercive field,
saturated polarization, and remnant polarization increase
with aspect ratio under an externally applied electric field
along the x3-direction. This effect can be attributed to an
increased volume fraction of c domains inside the particle.
A larger electric torque is needed from the externally
applied electric field for 180� switching. In the nanodisk
or thin film under open-circuit boundary conditions the
uniaxially out-of-plane compressive stress originating from
the surface tension makes the polarization lie along the in-
plane directions. Thus under an externally applied electric
field the polarization cannot be completely switched to
out-of-plane, causing the saturated and remnant polariza-
tion to decrease.

5. Summary

A Fourier iterative SPM was proposed to solve the Pois-
son equation with inhomogeneous dielectric constant,
polarization, and charge distributions. The proposed algo-
rithm shows good accuracy on comparing numerical solu-
tions for an infinite ferroelectric plate and an isolated
ferroelectric sphere with analytical solutions. The proposed
method was implemented in the phase field method to
simulate shape and size effects on the phase transitions,
domain structures, and domain switching in ferroelectric
nanoparticles. The calculated temperature–shape phase dia-
grams of the nanoparticles show that the Curie temperature
is increased in wire and rod shapes, but decreased in a dot
shape. The simulated critical diameter and thickness for
the nanowire and thin film are around 1.4 nm. Vortex
domain structures are found to be stable in the nanorod,
nanodot, and nanodisk geometries, which agrees well with
existing experimental results and first principles calcula-
tions. The simulation also shows that the nanoparticle
favors c domains in the wire or rod geometries, a1/a2

domains and c domains in the nanodot geometry, and a1/
a2 domains in the disk or film geometries. Simulated domain
switching shows that with the shape of the nanoparticle
changing from wire to film the coercive field, the saturated
polarization, and the remnant polarization decrease under
an externally applied electric field along the x3-direction.
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Appendix A

The mechanical equilibrium equations must be solved to
obtain the displacement and stress distributions in materi-
als with arbitrary elastic inhomogeneity and anisotropy.
We write the total elastic constant tensor as the sum of a
homogeneous part c0

ijkl and an inhomogeneous perturba-
tion DcijklðrÞ, i.e.

cijklðrÞ ¼ c0
ijkl þ DcijklðrÞ: ðA1Þ

Let eij(r) denote the total strain measured with respect to a
reference undeformed lattice. Then the local stress rij(r) is
given as:

rijðrÞ ¼ ðc0
ijkl þ DcijklðrÞÞðeklðrÞ � e0

klðrÞÞ; ðA2Þ

where e0
klðrÞ is the eigenstrain or stress-free strain. The

mechanical equilibrium equation orij(r)/oxj = 0 in an equil-
ibrious system has to be satisfied, i.e.

@

@xj
½ðc0

ijkl þ DcijklðrÞÞðeklðrÞ � e0
klðrÞÞ� ¼ 0: ðA3Þ

According to Khachaturyan’s elastic theory the total strain
eij(r) may be expressed as the sum of homogeneous and het-
erogeneous strains[27], i.e.

eijðrÞ ¼ eij þ deijðrÞ; ðA4Þ
where the homogeneous strain is defined in such a way thatR

deij(r)dV = 0, and the homogeneous strain represents the
macroscopic shape change of a system generated due to the
formation of a domain structure. The heterogeneous strain
doesn’t change the macroscopic shape of a system, and it
can be determined as

deijðrÞ ¼
1

2

@uiðrÞ
@xj

þ @ujðrÞ
@xi

� �
; ðA5Þ

where ui(r) is the position-dependent displacement. Substi-
tuting Eqs. (A4) and (A5) into Eq. (A3) we obtain, after
rearranging and simplifying,

c0
ijkl

@2ukðrÞ
@xj@xl

¼ @

@xj
½ðc0

ijkl þ DcijklðrÞÞðe0
klðrÞ � eklÞ�

� @

@xj
DcijklðrÞ

@ukðrÞ
@xl

� �
: ðA6Þ

For a zero order approximation where the elastic constants
are assumed to be homogeneous one can solve Eq. (A6) by
the Fourier spectral method. Thus Eq. (A6) becomes:
c0
ijkl

@2u0
kðrÞ

@xj@xl
¼ c0

ijkl

@e0
klðrÞ
@xj

: ðA7Þ

By applying Fourier transforms to Eq. (A7) we obtain:

�c0
ijklqjql~u

0
kðqÞ ¼ Iqjc

0
ijkl~e

0
klðqÞ; ðA8Þ

where ~u0
kðqÞ and ~e0

klðqÞ are Fourier transforms of u0
kðrÞ

and e0
klðrÞ,~u0

kðqÞ ¼
R

V u0
kðrÞe�Iq�rd3r;, and ~e0

klðqÞ ¼
R

V e0
klðrÞ

e�Iq�rd3r;, respectively, q is the reciprocal lattice vector, qj

is the jth component of q, and I is the imaginary unit.
Solving for displacement we get:

~u0
kðqÞ ¼ �IqjGikðqÞc0

ijkl~e
0
klðqÞ; ðA9Þ

where Gik(q) is the Green tensor whose inverse is defined as
G�1

ik ðqÞ ¼ c0
ijklqjql. After taking the inverse Fourier trans-

forms on both sides of Eq. (A9) we obtain the zero order
approximation of the displacement:

u0
kðrÞ ¼ �

Z
d3q

ð2pÞ3
IqjGikðqÞc0

ijkl~e
0
klðqÞeIq�r: ðA10Þ

Substituting the zero order displacement (Eq. (A10)) in the
iterative Eq. (A6) we obtain the first order displacement
iteration:

c0
ijkl

@2u1
kðrÞ

@xj@xl
¼ @

@xj
½ðc0

ijkl þ DcijklðrÞÞðe0
klðrÞ � eklÞ�

� @

@xj
DcijklðrÞ

@u0
kðrÞ
@xl

� �
: ðA11Þ

The solution of u1
kðrÞ is obtained in Fourier space:

~u1
kðqÞ¼�IGikðqÞqjfðc0

ijklþDcijklðrÞÞðe0
klðrÞ� eklÞ�DcijklðrÞ

@u0
kðrÞ
@xl
g

q

; ðA12Þ

where ðc0
ijkl þ DcijklðrÞÞðe0

klðrÞ � eklÞ � DcijklðrÞ
@u0

k ðrÞ
@xl

n o
q

indi-

cates the Fourier transforms of ðc0
ijkl þ DcijklðrÞÞðe0

klðrÞ�
eklÞ � DcijklðrÞ

@u0
k ðrÞ
@xl

.The higher order solutions for uk(r) are

derived in a similar way to the first order approximation:

c0
ijkl

@2un
kðrÞ

@xj@xl
¼ @

@xj
½ðc0

ijkl þ DcijklðrÞÞðe0
klðrÞ � eklÞ�

� @

@xj
DcijklðrÞ

@un�1
k ðrÞ
@xl

� �
: ðA13Þ

As with u1
kðrÞ, the solution for un

kðrÞ is solved using Fourier
transforms:

~un
kðqÞ¼�IGikðqÞqj ðc0

ijklþDcijklðrÞÞðe0
klðrÞ� eklÞ�DcijklðrÞ

@un�1
k ðrÞ
@xl

	 

q

: ðA14Þ

The homogeneous strain is determined by the mechanical
boundary conditions for the system. When the system is
under a constant strain eapp

kl the homogeneous strain ekl is
equal to the applied strain, i.e. ekl ¼ eapp

kl . However, when
the boundaries of the system are allowed to relax (or a
specified stressed boundary condition is applied) the homo-
geneous strain is obtained by minimizing the total elastic
energy. When the system is subjected to an applied stress
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rapp
kl the total elastic energy of the system is written as

[60,61]:

F el ¼
1

2

Z
V

cijklðrÞ½eijþ deijðrÞ � e0
ijðrÞ�½eklþ deklðrÞ � e0

klðrÞ�dV :

ðA15Þ
Minimization of the total elastic energy with respect to the
homogeneous strain yields:

ekl ¼ hsijklðrÞi rapp
ij þ hr0

ijðrÞi � hdrijðrÞi
� �

; ðA16Þ

where hsijklðrÞi ¼ hcijklðrÞi�1, hcijklðrÞi ¼ ð1=V Þ
R

V cijklðrÞdV ,
hr0

ijðrÞi ¼ ð1=V Þ
R

V cijklðrÞe0
klðrÞdV , and hdrijðrÞi ¼ ð1=V Þ

R
V

cijklðrÞdeklðrÞdV .
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